Яндекс.Метрика

​​​​​​​​​В 2016 году статьи сибирских ученых были опубликованы в журналах Nature Publishing Group. Предлагаем вашему вниманию список этих публикаций. Подбор материалов осуществлен с помощью базы данных Web of Science Core Collection.

1. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD / Buntgen, U (Buentgen, Ulf); Myglan, VS (Myglan, Vladimir S.); Ljungqvist, FC (Ljungqvist, Fredrik Charpentier); McCormick, M (McCormick, Michael); Di Cosmo, N (Di Cosmo, Nicola); Sigl, M (Sigl, Michael); Jungclaus, J (Jungclaus, Johann); Wagner, S (Wagner, Sebastian); Krusic, PJ (Krusic, Paul J.); Esper, J (Esper, Jan); Kaplan, JO (Kaplan, Jed O.); de Vaan, MAC (de Vaan, Michiel A. C.); Luterbacher, J (Luterbacher, Juerg); Wacker, L (Wacker, Lukas); Tegel, W (Tegel, Willy); Kirdyanov, AV (Kirdyanov, Alexander V.) // Nature Geoscience. Vol. 9. P.231–236. doi:10.1038/ngeo2652

Abstract

Climatic changes during the first half of the Common Era have been suggested to play a role in societal reorganizations in Europe1, 2 and Asia3, 4. In particular, the sixth century coincides with rising and falling civilizations1, 2, 3, 4, 5, 6, pandemics7, 8, human migration and political turmoil8, 9, 10, 11, 12, 13. Our understanding of the magnitude and spatial extent as well as the possible causes and concurrences of climate change during this period is, however, still limited. Here we use tree-ring chronologies from the Russian Altai and European Alps to reconstruct summer temperatures over the past two millennia. We find an unprecedented, long-lasting and spatially synchronized cooling following a cluster of large volcanic eruptions in 536, 540 and 547 AD (ref. 14), which was probably sustained by ocean and sea-ice feedbacks15, 16, as well as a solar minimum17. We thus identify the interval from 536 to about 660 AD as the Late Antique Little Ice Age. Spanning most of the Northern Hemisphere, we suggest that this cold phase be considered as an additional environmental factor contributing to the establishment of the Justinian plague7, 8, transformation of the eastern Roman Empire and collapse of the Sasanian Empire1, 2, 5, movements out of the Asian steppe and Arabian Peninsula8, 11, 12, spread of Slavic-speaking peoples9, 10 and political upheavals in China13.

В VI-​VII веках северное полушарие пережило малый ледниковый период.

 

2. Dual nature of magnetic dopants and competing trends in topological insulators / Sessi, P (Sessi, Paolo); Biswas, RR (Biswas, Rudro R.); Bathon, T (Bathon, Thomas); Storz, O (Storz, Oliver); Wilfert, S (Wilfert, Stefan); Barla, A (Barla, Alessandro); Kokh, KA (Kokh, Konstantin A.); Tereshchenko, OE (Tereshchenko, Oleg E.); Fauth, K (Fauth, Kai); Bode, M (Bode, Matthias); Balatsky, AV (Balatsky, Alexander V.) // Nature Communications. Vol. 7. Номер статьи: 12027. DOI: 10.1038/ncomms12027

Abstract

Topological insulators interacting with magnetic impurities have been reported to host several unconventional effects. These phenomena are described within the framework of gapping Dirac quasiparticles due to broken time-reversal symmetry. However, the overwhelming majority of studies demonstrate the presence of a finite density of states near the Dirac point even once topological insulators become magnetic. Here, we map the response of topological states to magnetic impurities at the atomic scale. We demonstrate that magnetic order and gapless states can coexist. We show how this is the result of the delicate balance between two opposite trends, that is, gap opening and emergence of a Dirac node impurity band, both induced by the magnetic dopants. Our results evidence a more intricate and rich scenario with respect to the once generally assumed, showing how different electronic and magnetic states may be generated and controlled in this fascinating class of materials.

 

3. The effect of host genetics on the gut microbiome / Bonder, MJ (Bonder, Marc Jan); Kurilshikov, A (Kurilshikov, Alexander); Tigchelaar, EF (Tigchelaar, Ettje F.); Mujagic, Z (Mujagic, Zlatan); Imhann, F (Imhann, Floris); Vila, AV (Vila, Arnau Vich); Deelen, P (Deelen, Patrick); Vatanen, T (Vatanen, Tommi); Schirmer, M (Schirmer, Melanie); Smeekens, SP (Smeekens, Sanne P.); Zhernakova, DV (Zhernakova, Dania V.); Jankipersadsing, SA (Jankipersadsing, Soesma A.); Jaeger, M (Jaeger, Martin); Oosting, M (Oosting, Marije); Cenit, MC (Cenit, Maria Carmen); Masclee, AAM (Masclee, Ad A. M.); Swertz, MA (Swertz, Morris A.); Li, Y (Li, Yang); Kumar, V (Kumar, Vinod); Joosten, L (Joosten, Leo); Harmsen, H (Harmsen, Hermie); Weersma, RK (Weersma, Rinse K.); Franke, L (Franke, Lude); Hofker, MH (Hofker, Marten H.); Xavier, RJ (Xavier, Ramnik J.); Jonkers, D (Jonkers, Daisy); Netea, MG (Netea, Mihai G.); Wijmenga, C (Wijmenga, Cisca); Fu, JY (Fu, Jingyuan); Zhernakova, A (Zhernakova, Alexandra) // Nature Genetics. 2016. Vol. 48, № 11 P. 14071412. DOI: 10.1038/ng.3663

Abstract

The gut microbiome is affected by multiple factors, including genetics. In this study, we assessed the influence of host genetics on microbial species, pathways and gene ontology categories, on the basis of metagenomic sequencing in 1,514 subjects. In a genome-wide analysis, we identified associations of 9 loci with microbial taxonomies and 33 loci with microbial pathways and gene ontology terms at P < 5 × 10−8. Additionally, in a targeted analysis of regions involved in complex diseases, innate and adaptive immunity, or food preferences, 32 loci were identified at the suggestive level of P < 5 × 10−6. Most of our reported associations are new, including genome-wide significance for the C-type lectin molecules CLEC4FCD207 at 2p13.3 and CLEC4AFAM90A1 at 12p13. We also identified association of a functional LCT SNP with the Bifidobacterium genus (P = 3.45 × 10−8) and provide evidence of a gene–diet interaction in the regulation of Bifidobacterium abundance. Our results demonstrate the importance of understanding host–microbe interactions to gain better insight into human health.

 

4. The feeder system of the Toba supervolcano from the slab to the shallow reservoir / Koulakov, I (Koulakov, Ivan); Kasatkina, E (Kasatkina, Ekaterina); Shapiro, NM (Shapiro, Nikolai M.); Jaupart, C (Jaupart, Claude); Vasilevsky, A (Vasilevsky, Alexander); El Khrepy, S (El Khrepy, Sami); AlArifi, N (AlArifi, Nassir); Smirnov, S (Smirnov, Sergey) // Nature Communications. Vol. 7. Номер статьи: 12228. DOI: 10.1038/ncomms12228

Abstract

The Toba Caldera has been the site of several large explosive eruptions in the recent geological past, including the world's largest Pleistocene eruption 74,000 years ago. The major cause of this particular behaviour may be the subduction of the fluid-rich Investigator Fracture Zone directly beneath the continental crust of Sumatra and possible tear of the slab. Here we show a new seismic tomography model, which clearly reveals a complex multilevel plumbing system beneath Toba. Large amounts of volatiles originate in the subducting slab at a depth of ∼150 km, migrate upward and cause active melting in the mantle wedge. The volatile-rich basic magmas accumulate at the base of the crust in a ∼50,000 km3 reservoir. The overheated volatiles continue ascending through the crust and cause melting of the upper crust rocks. This leads to the formation of a shallow crustal reservoir that is directly responsible for the supereruptions.

 

5. The genetic history of Ice Age Europe / Fu, QM (Fu, Qiaomei); Posth, C (Posth, Cosimo); Hajdinjak, M (Hajdinjak, Mateja); Petr, M (Petr, Martin); Mallick, S (Mallick, Swapan); Fernandes, D (Fernandes, Daniel); Furtwangler, A (Furtwangler, Anja); Haak, W (Haak, Wolfgang); Meyer, M (Meyer, Matthias); Mittnik, A (Mittnik, Alissa); Nickel, B (Nickel, Birgit); Peltzer, A (Peltzer, Alexander); Rohland, N (Rohland, Nadin); Slon, V (Slon, Viviane); Talamo, S (Talamo, Sahra); Lazaridis, I (Lazaridis, Iosif); Lipson, M (Lipson, Mark); Mathieson, I (Mathieson, Iain); Schiffels, S (Schiffels, Stephan); Skoglund, P (Skoglund, Pontus); Derevianko, AP (Derevianko, Anatoly P.); Drozdov, N (Drozdov, Nikolai); Slavinsky, V (Slavinsky, Vyacheslav); Tsybankov, A (Tsybankov, Alexander); Cremonesi, RG (Cremonesi, Renata Grifoni); Mallegni, F (Mallegni, Francesco); Gely, B (Gely, Bernard); Vacca, E (Vacca, Eligio); Morales, MRG (Gonzalez Morales, Manuel R.); Straus, LG (Straus, Lawrence G.); NeugebauerMaresch, C (NeugebauerMaresch, Christine); TeschlerNicola, M (TeschlerNicola, Maria); Constantin, S (Constantin, Silviu); Moldovan, OT (Moldovan, Oana Teodora); Benazzi, S (Benazzi, Stefano); Peresani, M (Peresani, Marco); Coppola, D (Coppola, Donato); Lari, M (Lari, Martina); Ricci, S (Ricci, Stefano); Ronchitelli, A (Ronchitelli, Annamaria); Valentin, F (Valentin, Frederique); Thevenet, C (Thevenet, Corinne); Wehrberger, K (Wehrberger, Kurt); Grigorescu, D (Grigorescu, Dan); Rougier, H (Rougier, Helene); Crevecoeur, I (Crevecoeur, Isabelle); Flas, D (Flas, Damien); Semal, P (Semal, Patrick); Mannino, MA (Mannino, Marcello A.); Cupillard, C (Cupillard, Christophe); Bocherens, H (Bocherens, Herve); Conard, NJ (Conard, Nicholas J.); Harvati, K (Harvati, Katerina); Moiseyev, V (Moiseyev, Vyacheslav); Drucker, DG (Drucker, Dorothee G.); Svoboda, J (Svoboda, Jiri); Richards, MP (Richards, Michael P.); Caramelli, D (Caramelli, David); Pinhasi, R (Pinhasi, Ron); Kelso, J (Kelso, Janet); Patterson, N (Patterson, Nick); Krause, J (Krause, Johannes); Paabo, S (Paeaebo, Svante); Reich, D (Reich, David) // Nature. Vol. 534. № 7606. Стр.: 200+. DOI: 10.1038/nature17993

Abstract

Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000–7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.

Журнал «Nature» опубликовал научную статью российского археолога 

 

6. Genomic analyses inform on migration events during the peopling of Eurasia / Pagani, L (Pagani, Luca); Lawson, DJ (Lawson, Daniel John); Jagoda, E (Jagoda, Evelyn); Morseburg, A (Moerseburg, Alexander); Eriksson, A (Eriksson, Anders); Mitt, M (Mitt, Mario); Clemente, F (Clemente, Florian); Hudjashov, G (Hudjashov, Georgi); DeGiorgio, M (DeGiorgio, Michael); Saag, L (Saag, Lauri); Wall, JD (Wall, Jeffrey D.); Cardona, A (Cardona, Alexia); Magi, R (Maegi, Reedik); Sayres, MAW (Sayres, Melissa A. Wilson); Kaewert, S (Kaewert, Sarah); Inchley, C (Inchley, Charlotte); Scheib, CL (Scheib, Christiana L.); Jarve, M (Jaerve, Mari); Karmin, M (Karmin, Monika); Jacobs, GS (Jacobs, Guy S.); Antao, T (Antao, Tiago); Iliescu, FM (Iliescu, Florin Mircea); Kushniarevich, A (Kushniarevich, Alena); Ayub, Q (Ayub, Qasim); TylerSmith, C (TylerSmith, Chris); Xue, YL (Xue, Yali); Yunusbayev, B (Yunusbayev, Bayazit); Tambets, K (Tambets, Kristiina); Mallick, CB (Mallick, Chandana Basu); Saag, L (Saag, Lehti); Pocheshkhova, E (Pocheshkhova, Elvira); Andriadze, G (Andriadze, George); Muller, C (Muller, Craig); Westaway, MC (Westaway, Michael C.); Lambert, DM (Lambert, David M.); Zoraqi, G (Zoraqi, Grigor); Turdikulova, S (Turdikulova, Shahlo); Dalimova, D (Dalimova, Dilbar); Sabitov, Z (Sabitov, Zhaxylyk); Sultana, GNN (Sultana, Gazi Nurun Nahar); Lachance, J (Lachance, Joseph); Tishkoff, S (Tishkoff, Sarah); Momynaliev, K (Momynaliev, Kuvat); Isakova, J (Isakova, Jainagul); Damba, LD (Damba, Larisa D.); Gubina, M (Gubina, Marina); Nymadawa, P (Nymadawa, Pagbajabyn); Evseeva, I (Evseeva, Irina); Atramentova, L (Atramentova, Lubov); Utevska, O (Utevska, Olga); Ricaut, FX (Ricaut, FrancoisXavier) ; Brucato, N (Brucato, Nicolas); Sudoyo, H (Sudoyo, Herawati); Letellier, T (Letellier, Thierry); Cox, MP (Cox, Murray P.); Barashkov, NA (Barashkov, Nikolay A.); Skaro, V (Skaro, Vedrana); Mulahasanovic, L (Mulahasanovic, Lejla); Primorac, D (Primorac, Dragan); Sahakyan, H (Sahakyan, Hovhannes); Mormina, M (Mormina, Maru); Eichstaedt, CA (Eichstaedt, Christina A.); Lichman, DV (Lichman, Daria V.); Abdullah, S (Abdullah, Syafiq); Chaubey, G (Chaubey, Gyaneshwer); Wee, JTS (Wee, Joseph T. S.); Mihailov, E (Mihailov, Evelin); Karunas, A (Karunas, Alexandra); Litvinov, S (Litvinov, Sergei); Khusainova, R (Khusainova, Rita); Ekomasova, N (Ekomasova, Natalya); Akhmetova, V (Akhmetova, Vita); Khidiyatova, I (Khidiyatova, Irina); Marjanovi, D (Marjanovi, Damir); Yepiskoposyan, L (Yepiskoposyan, Levon); Behar, DM (Behar, Doron M.); Balanovska, E (Balanovska, Elena); Metspalu, A (Metspalu, Andres); Derenko, M (Derenko, Miroslava); Malyarchuk, B (Malyarchuk, Boris); Voevoda, M (Voevoda, Mikhail); Fedorova, SA (Fedorova, Sardana A.); Osipova, LP (Osipova, Ludmila P.); Mirazon, M (Mirazon, Marta); Gerbault, P (Gerbault, Pascale); Leavesley, M (Leavesley, Matthew); Migliano, AB (Migliano, Andrea Bamberg); Petraglia, M (Petraglia, Michael); Balanovsky, O (Balanovsky, Oleg); Khusnutdinova, EK (Khusnutdinova, Elza K.); Metspalu, E (Metspalu, Ene); Thomas, MG (Thomas, Mark G.); Manica, A (Manica, Andrea); Nielsen, R (Nielsen, Rasmus); Villems, R (Villems, Richard); Willerslev, E (Willerslev, Eske); Kivisild, T (Kivisild, Toomas); Metspalu, M (Metspalu, Mait) // Nature. Vol. 538. № 7624. P. 238+. DOI: 10.1038/nature19792

Abstract

High-coverage whole-genome sequence studies have so far focused on a limited number1of geographically restricted populations2, 3, 4, 5, or been targeted at specific diseases, such as cancer6. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history7, 8, 9 and refuelled the debate on the mutation rate in humans10. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record11, and admixture between AMHs and Neanderthals predating the main Eurasian expansion12, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.

 

7. Incipient ferroelectricity of water molecules confined to nano-channels of beryl / Gorshunov, P (Gorshunov, P.); Torgashev, VI (Torgashev, V. I.); Zhukova, ES (Zhukova, E. S.); Thomas, VG (Thomas, V. G.); Belyanchikov, MA (Belyanchikov, M. A.); Kadlec, C (Kadlec, C.); Savinov, M (Savinov, M.); Ostapchuk, T (Ostapchuk, T.); Petzelt, J (Petzelt, J.); Prokleska, J (Prokleska, J.); Tomas, PV (Tomas, P. V.); Pestrjakov, EV (Pestrjakov, E. V.); Fursenko, DA (Fursenko, D. A.); Shakurov, GS (Shakurov, G. S.); Prokhorov, AS (Prokhorov, A. S.); Gorelik, VS (Gorelik, V. S.); Kadyrov, LS (Kadyrov, L. S.); Uskov, VV (Uskov, V. V.); Kremer, RK (Kremer, R. K.); Dressel, M (Dressel, M.) // Nature Communications. Vol. 7. Номер статьи: 12842. DOI: 10.1038/ncomms12842

Abstract

Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole–dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole–dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie–Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.

 

8. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic / Ernst, RE (Ernst, R. E.); Hamilton, MA (Hamilton, M. A.); Soderlund, U (Soderlund, U.); Hanes, JA (Hanes, J. A.); Gladkochub, DP (Gladkochub, D. P.); Okrugin, AV (Okrugin, A. V.); Kolotilina, T (Kolotilina, T.); Mekhonoshin, AS (Mekhonoshin, A. S.); Bleeker, W (Bleeker, W.); LeCheminant, AN (LeCheminant, A. N.); Buchan, KL (Buchan, K. L.); Chamberlain, KR (Chamberlain, K. R.); Didenko, AN (Didenko, A. N.) // Nature Geoscience. Vol. 9, № 6. P. 464+. DOI: 10.1038/NGEO2700

Abstract

Precambrian supercontinents Nuna-Columbia (1.7 to 1.3 billion years ago) and Rodinia (1.1 to 0.7 billion years ago) have been proposed. However, the arrangements of crustal blocks within these supercontinents are poorly known. Huge, dominantly basaltic magmatic outpourings and intrusions, covering up to millions of square kilometres, termed Large Igneous Provinces, typically accompany (super) continent breakup, or attempted breakup and offer an important tool for reconstructing supercontinents. Here we focus on the Large Igneous Province record for Siberia and Laurentia, whose relative position in Nuna-Columbia and Rodinia reconstructions is highly controversial. We present precise geochronology—nine U–Pb and six Ar–Ar ages—on dolerite dykes and sills, along with existing dates from the literature, that constrain the timing of emplacement of Large Igneous Province magmatism in southern Siberia and northern Laurentia between 1,900 and 720 million years ago. We identify four robust age matches between the continents 1,870, 1,750, 1,350 and 720 million years ago, as well as several additional approximate age correlations that indicate southern Siberia and northern Laurentia were probably near neighbours for this 1.2-billion-year interval. Our reconstructions provide a framework for evaluating the shared geological, tectonic and metallogenic histories of these continental blocks.

 

9. Melting at the base of the Greenland ice sheet explained by Iceland hotspot history / Rogozhina, I (Rogozhina, Irina); Petrunin, AG (Petrunin, Alexey G.); Vaughan, APM (Vaughan, Alan P. M.); Steinberger, B (Steinberger, Bernhard); Johnson, JV (Johnson, Jesse V.); Kaban, MK (Kaban, Mikhail K.); Calov, R (Calov, Reinhard); Rickers, F (Rickers, Florian); Thomas, M (Thomas, Maik); Koulakov, I (Koulakov, Ivan) // Nature Geoscience. Vol. 9. № 5. P.366+. DOI: 10.1038/NGEO2689

Abstract

Ice-penetrating radar1, 2, 3 and ice core drilling4 have shown that large parts of the north-central Greenland ice sheet are melting from below. It has been argued that basal ice melt is due to the anomalously high geothermal flux1, 4 that has also influenced the development of the longest ice stream in Greenland1. Here we estimate the geothermal flux beneath the Greenland ice sheet and identify a 1,200-km-long and 400-km-wide geothermal anomaly beneath the thick ice cover. We suggest that this anomaly explains the observed melting of the ice sheet's base, which drives the vigorous subglacial hydrology3 and controls the position of the head of the enigmatic 750-km-long northeastern Greenland ice stream5. Our combined analysis of independent seismic, gravity and tectonic data6, 7, 8, 9 implies that the geothermal anomaly, which crosses Greenland from west to east, was formed by Greenland's passage over the Iceland mantle plume between roughly 80 and 35 million years ago. We conclude that the complexity of the present-day subglacial hydrology and dynamic features of the north-central Greenland ice sheet originated in tectonic events that pre-date the onset of glaciation in Greenland by many tens of millions of years.

 

10. Mode-locking via dissipative Faraday instability / Tarasov, N (Tarasov, Nikita); Perego, AM (Perego, Auro M.); Churkin, DV (Churkin, Dmitry V.); Staliunas, K (Staliunas, Kestutis); Turitsyn, SK (Turitsyn, Sergei K.) // Nature Communications. Vol. 7. Номер статьи: 12441 DOI: 10.1038/ncomms12441

Abstract

Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin–Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system—spectrally dependent losses—achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin–Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

 

11. A new active Li-Mn-O compound for high energy density Li-ion batteries / Freire, M (Freire, M.); Kosova, NV (Kosova, N. V.); Jordy, C (Jordy, C.); Chateigner, D (Chateigner, D.); Lebedev, OI (Lebedev, O. I.); Maignan, A (Maignan, A.); Pralong, V (Pralong, V.) // Nature Materials. Vol. 15. № 2. P. 173+. DOI: 10.1038/NMAT4479

Abstract

The search for new materials that could improve the energy density of Li-ion batteries is one of today's most challenging issues. Many families of transition metal oxides as well as transition metal polyanionic frameworks have been proposed during the past twenty years1, 2. Among them, manganese oxides, such as the LiMn2O4 spinel or the overlithiated oxide Li[Li1/3Mn2/3]O2, have been intensively studied owing to the low toxicity of manganese-based materials and the high redox potential of the Mn3+/Mn4+ couple. In this work, we report on a new electrochemically active compound with the 'Li4Mn2O5' composition, prepared by direct mechanochemical synthesis at room temperature. This rock-salt-type nanostructured material shows a discharge capacity of 355 mAh g−1, which is the highest yet reported among the known lithium manganese oxide electrode materials. According to the magnetic measurements, this exceptional capacity results from the electrochemical activity of the Mn3+/Mn4+ and O2−/O redox couples, and, importantly, of the Mn4+/Mn5+ couple also.

 

12. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations / Mallick, S (Mallick, Swapan); Li, H (Li, Heng); Lipson, M (Lipson, Mark); Mathieson, I (Mathieson, Iain); Gymrek, M (Gymrek, Melissa); Racimo, F (Racimo, Fernando); Zhao, MY (Zhao, Mengyao); Chennagiri, N (Chennagiri, Niru); Nordenfelt, S (Nordenfelt, Susanne); Tandon, A (Tandon, Arti); Skoglund, P (Skoglund, Pontus); Lazaridis, I (Lazaridis, Iosif); Sankararaman, S (Sankararaman, Sriram); Fu, QM (Fu, Qiaomei); Rohland, N (Rohland, Nadin); Renaud, G (Renaud, Gabriel); Erlich, Y (Erlich, Yaniv); Willems, T (Willems, Thomas); Gallo, C (Gallo, Carla); Spence, JP (Spence, Jeffrey P.); Song, YS (Song, Yun S.); Poletti, G (Poletti, Giovanni); Balloux, F (Balloux, Francois); van Driem, G (van Driem, George); de Knijff, P (de Knijff, Peter); Romero, IG (Romero, Irene Gallego); Jha, AR (Jha, Aashish R.); Behar, DM (Behar, Doron M.); Bravi, CM (Bravi, Claudio M.); Capelli, C (Capelli, Cristian); Hervig, T (Hervig, Tor); MorenoEstrada, A (MorenoEstrada, Andres); Posukh, OL (Posukh, Olga L.); Balanovska, E (Balanovska, Elena); Balanovsky, O (Balanovsky, Oleg); KarachanakYankova, S (KarachanakYankova, Sena); Sahakyan, H (Sahakyan, Hovhannes); Toncheva, D (Toncheva, Draga); Yepiskoposyan, L (Yepiskoposyan, Levon); TylerSmith, C (TylerSmith, Chris); Xue, Y (Xue, Yali); Abdullah, MS (Abdullah, M. Syafiq); RuizLinares, A (RuizLinares, Andres); Beall, CM (Beall, Cynthia M.; Di Rienzo, A (Di Rienzo, Anna); Jeong, C (Jeong, Choongwon); Starikovskaya, EB (Starikovskaya, Elena B.); Metspalu, E (Metspalu, Ene); Parik, J (Parik, Juri); Villems, R (Villems, Richard); Henn, BM (Henn, Brenna M.); Hodoglugil, U (Hodoglugil, Ugur); Mahley, R (Mahley, Robert); Sajantila, A (Sajantila, Antti); Stamatoyannopoulos, G (Stamatoyannopoulos, George); Wee, JTS (Wee, Joseph T. S.); Khusainova, R (Khusainova, Rita); Khusnutdinova, E (Khusnutdinova, Elza); Litvinov, S (Litvinov, Sergey); Ayodo, G (Ayodo, George); Comas, D (Comas, David); Hammer, MF (Hammer, Michael F.); Kivisild, T (Kivisild, Toomas); Klitz, W (Klitz, William); Winkler, CA (Winkler, Cheryl A.); Labuda, D (Labuda, Damian); Bamshad, M (Bamshad, Michael); Jorde, LB (Jorde, Lynn B.); Tishkoff, SA (Tishkoff, Sarah A.); Watkins, WS (Watkins, W. Scott); Metspalu, M (Metspalu, Mait); Dryomov, S (Dryomov, Stanislav); Sukernik, R (Sukernik, Rem); Singh, L (Singh, Lalji); Thangaraj, K (Thangaraj, Kumarasamy); Paabo, S (Paeaebo, Svante); Kelso, J (Kelso, Janet); Patterson, N (Patterson, Nick); Reich, D (Reich, David) // Nature. Vol. 538. № 7624. P. 201+. DOI: 10.1038/nature18964

Abstract

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.

 

13. Spin-texture inversion in the giant Rashba semiconductor BiTeI / Maass, H (Maass, Henriette); Bentmann, H (Bentmann, Hendrik); Seibel, C (Seibel, Christoph); Tusche, C (Tusche, Christian); Eremeev, SV (Eremeev, Sergey V.); Peixoto, TRF (Peixoto, Thiago R. F.); Tereshchenko, OE (Tereshchenko, Oleg E.); Kokh, KA (Kokh, Konstantin A.); Chulkov, EV (Chulkov, Evgueni V.); Kirschner, J (Kirschner, Juergen); Reinert, F (Reinert, Friedrich) // Nature Communications. Vol. 7. Номер статьи: 11621. DOI: 10.1038/ncomms11621

Abstract

Semiconductors with strong spin–orbit interaction as the underlying mechanism for the generation of spin-polarized electrons are showing potential for applications in spintronic devices. Unveiling the full spin texture in momentum space for such materials and its relation to the microscopic structure of the electronic wave functions is experimentally challenging and yet essential for exploiting spin–orbit effects for spin manipulation. Here we employ a state-of-the-art photoelectron momentum microscope with a multichannel spin filter to directly image the spin texture of the layered polar semiconductor BiTeI within the full two-dimensional momentum plane. Our experimental results, supported by relativistic ab initio calculations, demonstrate that the valence and conduction band electrons in BiTeI have spin textures of opposite chirality and of pronounced orbital dependence beyond the standard Rashba model, the latter giving rise to strong optical selection-rule effects on the photoelectron spin polarization. These observations open avenues for spin-texture manipulation by atomic-layer and charge carrier control in polar semiconductors.

 

14. Temperature-​driven massless Kane fermions in HgCdTe crystals / Teppe, F (Teppe, F.); Marcinkiewicz, M (Marcinkiewicz, M.); Krishtopenko, SS (Krishtopenko, S. S.); Ruffenach, S (Ruffenach, S.); Consejo, C (Consejo, C.); Kadykov, AM (Kadykov, A. M.); Desrat, W (Desrat, W.); But, D (But, D.); Knap, W (Knap, W.); Ludwig, J (Ludwig, J.); Moon, S (Moon, S.); Smirnov, D (Smirnov, D.); Orlita, M (Orlita, M.); Jiang, Z (Jiang, Z.); Morozov, SV (Morozov, S. V.); Gavrilenko, VI (Gavrilenko, V. I.); Mikhailov, NN (Mikhailov, N. N.); Dvoretskii, SA (Dvoretskii, S. A.) // Nature Communications. Vol. 7. Номер статьи: 12576. DOI: 10.1038/ncomms12576

Abstract

It has recently been shown that electronic states in bulk gapless HgCdTe offer another realization of pseudo-relativistic three-dimensional particles in condensed matter systems. These single valley relativistic states, massless Kane fermions, cannot be described by any other relativistic particles. Furthermore, the HgCdTe band structure can be continuously tailored by modifying cadmium content or temperature. At critical concentration or temperature, the bandgap collapses as the system undergoes a semimetal-to-semiconductor topological phase transition between the inverted and normal alignments. Here, using far-infrared magneto-spectroscopy we explore the continuous evolution of band structure of bulk HgCdTe as temperature is tuned across the topological phase transition. We demonstrate that the rest mass of Kane fermions changes sign at critical temperature, whereas their velocity remains constant. The velocity universal value of (1.07±0.05) × 106 m s−1 remains valid in a broad range of temperatures and Cd concentrations, indicating a striking universality of the pseudo-relativistic description of the Kane fermions in HgCdTe.

 

15. Two-dimensional flow nanometry of biological nanoparticles for accurate determination of their size and emission intensity / Block, S (Block, Stephan); Fast, BJ (Fast, Bjorn Johansson); Lundgren, A (Lundgren, Anders); Zhdanov, VP (Zhdanov, Vladimir P.); Hook, F (Hook, Fredrik) // Nature Communications. Vol. 7. Номер статьи: 12956. DOI: 10.1038/ncomms12956

Abstract

Biological nanoparticles (BNPs) are of high interest due to their key role in various biological processes and use as biomarkers. BNP size and composition are decisive for their functions, but simultaneous determination of both properties with high accuracy remains challenging. Optical microscopy allows precise determination of fluorescence/scattering intensity, but not the size of individual BNPs. The latter is better determined by tracking their random motion in bulk, but the limited illumination volume for tracking this motion impedes reliable intensity determination. Here, we show that by attaching BNPs to a supported lipid bilayer, subjecting them to hydrodynamic flows and tracking their motion via surface-sensitive optical imaging enable determination of their diffusion coefficients and flow-induced drifts, from which accurate quantification of both BNP size and emission intensity can be made. For vesicles, the accuracy of this approach is demonstrated by resolving the expected radius-squared dependence of their fluorescence intensity for radii down to 15 nm.

16. Massive remobilization of permafrost carbon during post-glacial warming / Tesi, T (Tesi, T.); Muschitiello, F (Muschitiello, F.); Smittenberg, RH (Smittenberg, R. H.); Jakobsson, M (Jakobsson, M.); Vonk, JE (Vonk, J. E.); Hill, P (Hill, P.); Andersson, A (Andersson, A.); Kirchner, N (Kirchner, N.); Noormets, R (Noormets, R.); Dudarev, O (Dudarev, O.); Semiletov, I (Semiletov, I.); Gustafsson, O (Gustafsson, O.) // Nature Communications. Vol. 7. Article number: 13653. doi:10.1038/ncomms13653

Abstract

Recent hypotheses, based on atmospheric records and models, suggest that permafrost carbon (PF-C) accumulated during the last glaciation may have been an important source for the atmospheric CO2 rise during post-glacial warming. However, direct physical indications for such PF-C release have so far been absent. Here we use the Laptev Sea (Arctic Ocean) as an archive to investigate PF-C destabilization during the last glacial–interglacial period. Our results show evidence for massive supply of PF-C from Siberian soils as a result of severe active layer deepening in response to the warming. Thawing of PF-C must also have brought about an enhanced organic matter respiration and, thus, these findings suggest that PF-C may indeed have been an important source of CO2 across the extensive permafrost domain. The results challenge current paradigms on the post-glacial CO2 rise and, at the same time, serve as a harbinger for possible consequences of the present-day warming of PF-C soils.

Как последний Ледниковый период связан с изменениями климата на Земле в наши дни?

 

Составители: Вахрамеева З.В., Павлова И.А., ГПНТБ СО РАН

 

Авторы публикаций, которые хотели бы рассказать о своих исследованиях более подробно, могут связаться с нами по адресу: feedback@sib-science.info.