Яндекс.Метрика

J.Raphanel,A.Dimanov, L.A. Nazarova, L.A. Nazarov,A.I.Artemova

Выпуск: 5 , Том: 46 , Год издания: 2010
Сериальное издание: Journal of Mining Science
Страницы: 495-500

Аннотация

The high-temperature rheology of heterogeneous anorthite - diopside aggregates has been investigated numerically, in support to experimental data obtained by triaxial torsion tests, performed at high pressure (400 MPa) and temperature (1150┬░ C). The mechanical data exhibited linear viscous flow. Accordingly, scanning electron microscopy revealed grain sliding mechanisms, but also crystal slip plasticity, recrystallization and micro-fracturing. Finite element computations at the aggregate scale aimed at the understanding of the sequence of active mechanisms and their link to the macroscopic behavior. For instance, we show that the presence of coarser and stronger diopside inclusions in weaker and fine grained anorthite matrix results in very heterogeneous local stress fields, allowing for the activation of multiple deformation mechanisms. Our study indicates that shear zones in the lower crust should be dominated by Newtonian rheology in relation with grain sliding mechanisms, even though complementary accommodation mechanisms such as crystal plasticity and damage may be necessary at the local scale, due to the heterogeneous microstructures.
индекс в базе ИАЦ: 034347