Яндекс.Метрика

Y.D.Zakharov,A.S.Biakov,M.Horacek,R.V.Kutygin, E.S. Sobolev,D.P.G.Bond

Издание: Morphogenesis, Environmental Stress and Reverse Evolution
Издатель: Springer International Publishing , Место издания: Cham , Год издания: 2020
Страницы: 197-231

Аннотация

We propose an updated ammonoid zonation for the Permian-Triassic boundary succession (the lower Nekuchan Formation) in the Verkhoyansk region of Siberia: (1) Otoceras concavum zone (uppermost Changhsingian); (2) Otoceras boreale zone (lowermost Induan); (3) Tompophiceras morpheous zone (lower Induan); and (4) Wordieoceras decipiens zone (lower Induan). The Tompophiceras pascoei zone, previously defined between the Otoceras boreale and Tompophiceras morpheous zones, is removed in our scheme. Instead of this the Tompophiceras pascoei epibole zone is proposed for the lower part of the Tompophiceras morpheous zone. New and previously published nitrogen isotope records are interpreted as responses to climatic fluctuations in the middle to higher palaeolatitudes of Northeastern Asia and these suggest a relatively cool climatic regime for the Boreal Superrealm; however the trend towards warming across the Permian-Triassic boundary transition is also seen. The evolutionary development and geographical differentiation of otoceratid ammonoids and associated groups are considered. It is likely that the Boreal Superrealm was their main refugium, where otocerid, dzhulfitid and some other ammonoids survived the major biotic crisis at the end of the Permian. The similarity of ontogenetic development of suture lines of Otoceras woodwardi Griesbach and O. boreale Spath gives some grounds for suggesting a monophyletic origin of the genus Otoceras, having bipolar distribution.
индекс в базе ИАЦ: 039928