Яндекс.Метрика

M. Novikov,E.Caspari, V. Lisitsa,B.Quintal,J.G.Rubino,K.Holliger

Издание: Poromechanics 2017: Proceedings of the 6th Biot Conference on Poromechanics (Paris, France, July 9-13, 2017)
Место издания: Paris , Год издания: 2017
Страницы: 1499-1506

Аннотация

Several mechanisms can cause wave attenuation and velocity dispersion in fluid-saturated fractured porous media comprising, on the one hand, pressure diffusion phenomena, such as fracture-to-background (FB) and fracture-to-fracture (FF) wave-induced flow (WIFF), and, on the other hand, dynamic effects, such as scattering and Biot global flow. In this study, we compare attenuation estimates from wave propagation simulations based on Biot's dynamic equations with corresponding estimates from a numerical upscaling approach based on quasi-static poroelasticity. The former is able to capture all aforementioned attenuation mechanisms and their interplay, though detailed interpretations tend to be difficult. The latter only accounts for pressure diffusion phenomena and thus will be guiding the physical interpretation. We verify that the attenuation behavior caused by pressure diffusion due to FB WIFF is equivalent for both approaches. The results for FF WIFF are less conclusive. We also observe that scattering may be affected by pressure diffusion phenomena.
индекс в базе ИАЦ: 048519